Prediction of binding affinities between the human amphiphysin-1 SH3 domain and its peptide ligands using homology modeling, molecular dynamics and molecular field analysis.
نویسندگان
چکیده
The SH3 domain of the human protein amphiphysin-1, which plays important roles in clathrin-mediated endocytosis, actin function and signaling transduction, can recognize peptide motif PXRPXR (X is any amino acid) with high affinity and specificity. We have constructed a complex structure of the amphiphysin-1 SH3 domain and a high-affinity peptide ligand PLPRRPPRA using homology modeling and molecular docking, which was optimized by molecular dynamics (MD). Three-dimensional quantitative structure-affinity relationship (3D-QSAR) analyses on the 200 peptides with known binding affinities to the amphiphysin-1 SH3 domain was then performed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). The best CoMSIA model showed promising predictive power, giving good predictions for about 95% of the peptides in the test set (absolute prediction errors less than 1.0). It was used to validate peptide-SH3 binding structure and provide insight into the structural requirements for binding of peptides to SH3 domains. Finally, MD simulations were performed to analyze the interaction between the SH3 domain and another peptide GFPRRPPPRG that contains with the PXRPXsR (s represents residues with small side chains) motif. MD simulations demonstrated that the binding conformation of GFPRRPPPRG is quite different from that of PLPRRPPRAA especially the four residues at the C terminal, which may explain why the CoMSIA model cannot give good predictions on the peptides of the PXRPXsR motif. Because of its efficiency and predictive power, the 3D-QSAR model can be used as a scoring filter for predicting peptide sequences bound to SH3 domains.
منابع مشابه
Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.
Many important protein-protein interactions are mediated by peptide recognition modular domains, such as the Src homology 3 (SH3), SH2, PDZ, and WW domains. Characterizing the interaction interface of domain-peptide complexes and predicting binding specificity for modular domains are critical for deciphering protein-protein interaction networks. Here, we propose the use of an energetic decompos...
متن کاملMolecular Modeling and Docking Studies on the First Chlorotoxin-Like Peptide from Iranian Scorpion Mesobuthuseupeus (Meict) and SNP Variants of Matrix Methaloproteinase-2 (MMP-2)
Background: MeICT is the first chlorotoxin-like peptide isolated from the Iranian Scorpion Mesobuthus eupeus. Chlorotoxin (CTX) is a neurotoxin that specially binds to (MMP-2) on ma-lignant cells and now is used in treatment of glioma. In the present study, we have used homology modeling to propose the 3D structure of MeICTand analyze its interaction with MMP-2 and its SNP types. Methods:The ...
متن کاملMolecular Interaction of Benzalkonium Ibuprofenate and its Discrete Ingredients with Human Serum Albumin
Studying the interaction of pharmaceutical ionic liquids with human serum albumin (HSA) can help investigating whether or not ionic liquid formation can enhance pharmacological profile of the discrete ingredients. In this respect, in the present work, the interactions of Benzalkonium Ibuprofenate, as a well-known active pharmaceutical ionic liquid, Benzalkonium Chloride, and also Sodium Ibuprof...
متن کاملStudies of Interaction between Propranolol and Human Serum Albumin in the Presence of DMMP by Molecular Spectroscopy and Molecular Dynamics Simulation
The interaction between propranolol (PROP) and human serum albumin (HSA) was studied in the presence of dimethyl methylphosphonate (DMMP). DMMP is usually considered as a simulant for chemical warfare agents (CWAs). For this purpose fluorescence quenching, resonance light scattering (RLS), synchronous, three-dimensional fluorescence spectroscopy and molecular dynamics (MD) simulation were emplo...
متن کاملComputational Analysis and Prediction of the Binding Motif and Protein Interacting Partners of the Abl SH3 Domain
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of proteome research
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2006